6.
Batasan nilai
perbandingan trigonometri
Batas-batas nilai perbandingan
trigonometri terdefinisi sebagai berikut:
$latex {\color{Blue} \begin{array}{rcl}-1\leqslant sinx\leqslant 1\qquad &\Rightarrow& \qquad cscx \geq 1\ atau\ cscx< -1\\\\-1\leqslant cosx\leqslant 1\qquad &\Rightarrow& \qquad secx \geq 1\ atau\ secx< -1\\\\-\infty \leqslant tanx\leqslant +\infty \qquad &\Rightarrow& \qquad -\infty\leq cotx \leq +\infty\end{array}}$
Contoh-contoh
soal
1.
Diketahi $latex sinx=\frac{p-2}{8-p}$.
Tentukan batas-batas nilai $latex p$.
Jawaban:
$latex sinx=\frac{p-2}{8-p}\qquad \Rightarrow \qquad -1\leq \frac{p-2}{8-p}\leq 1$
Bagian pertama:
$latex \large{\begin{array}{rcl}\frac{p-2}{8-p}&\leq &1 \\\\\frac{p-2}{8-p}-1&\leq &0\\\\\frac{p-2-(8-p)}{8-p}&\leq &0\\\\\frac{2p-10}{8-p}&\leq &0\\\\\frac{2(p-5)}{8-p}&\leq &0\\\\p\leq 5&atau&p> 8 \end{array}}$
Bagian kedua:
$latex \large{\begin{array}{rcl}\frac{p-2}{8-p}&\geq &-1 \\\\\frac{p-2}{8-p}+1&\geq &0\\\\\frac{p-2}{p-8}-1&\leq &0\\\\\frac{p-2-(p-8)}{p-8}&\leq &0\\\\\frac{6}{p-8}&\leq &0\\\\p&\leq &8 \end{array}}$
Karena $latex p> 8$ dan $latex p< 8$ saling menggugurkan maka batasan nilai $latex p$ yang memenuhi adalah $latex p\leq 5$.
2.
Untuk sudut $latex \varphi$ dalam kuadran
III diketahui $latex tan\varphi =\frac{1}{2}\sqrt{2}$. Carilah perbandingan
trigonometri lainnya dari $latex \varphi$.
Jawaban:
(1)
$latex tan\varphi =\frac{1}{2}\sqrt{2}$
(2)
$latex cot\varphi =\frac{2}{\sqrt{2}}=\sqrt{2}$
(3)
$latex sec^2\varphi =1+tan^2\varphi =1+\frac{1}{4}.2=\frac{6}{4}$
$latex sec\varphi =-\sqrt{\frac{6}{4}}=-\frac{1}{2}\sqrt{6}$
(4)
$latex cos\varphi =-\frac{2}{\sqrt{6}}=-\frac{1}{3}\sqrt{6}$
(5)
$latex cos^2\varphi +sin^2\varphi =1$
$latex \frac{6}{9}+sin^2\varphi =1$
$latex sin^2\varphi =1-\frac{6}{9}=\frac{3}{9}$
$latex sin\varphi =-\sqrt{\frac{3}{9}}=-\frac{1}{3}\sqrt{3}$
(6)
$latex csc\varphi =-\frac{3}{\sqrt{3}}=-\sqrt{3}$
3.
Untuk sudut $latex \delta $ dalam kuadran
IV, nyatakan semua perbandingan trigonometri dalam $latex cot\delta $.
Jawaban:
(1)
$latex cot\delta = cot\delta $
(2)
$latex tan\delta = \frac{1}{cot\delta }$
(3)
$latex csc^2\delta = cot^2\delta +1$
$latex csc\delta = -\sqrt{cot^2\delta +1}$
(4) $latex sin\delta = -\frac{1}{\sqrt{cot^2\delta +1}}= -\frac{\sqrt{cot^2\delta +1}}{cot^2\delta +1}$
(5)
$latex cos^2\delta +sin^2\delta =1$
$latex cos^2\delta +\frac{1}{cot^2\delta +1}=1$
$latex cos^2\delta +\frac{1}{cot^2\delta +1}=1$
$latex cos\delta =-\frac{cot\delta }{\sqrt{cot^2\delta +1}}=-\frac{cot\delta \sqrt{cot^2\delta +1}}{cot^2\delta +1}$
(6) $latex sec\delta =-\frac{\sqrt{cot^2\delta +1}}{cot\delta }$
Adjie Gumarang Pujakelana, 2013
-->
Tidak ada komentar:
Posting Komentar